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ABSTRACT

With the rapid advances in machine learning algorithms and sensing technologies, machine prog-
nostics and health management (PHM) via data-driven approaches has become a trend in sophisti-
cated machine tool industry. The run-to-failure data are necessary for data-driven approaches.
However, the average life of the machine is two to three years, the time of collecting data is extended.
It is a big challenge to collect run-to-failure data and build a PHM model. Therefore, we propose an
Edge-based RNN Anomaly Detection Platform (ERADP). ERADP builds the model based on healthy
data and notify anomalies two hours in advance. The true alarm rate is up to 100%. Besides, ERADP
can accelerate the training time almost 120 times faster than the traditional model.
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We propose an Edge-based RNN Anomaly Detection Platform (ERADP) to solve the data-imbalance
issue and demonstrate detect anomalies in real time for machinery industry. ERADP can make the
true alarm rate up to 100% and speed up model training almost 120 times faster. Besides, we
cooperate with TongTai, which is the biggest machine tool company in Taiwan. Equipped ERADP
with machine tools, the cost of repairing and failure products can be intensively decreased. The price

of machine tools can increase by 6%. The revenue of the machinery industry can increase by about
0.27 billion US dollars. ERADP can really make a significant impact on the machinery industry.

Edge Server:
Nvidia Jetson TX2
'3 = o -

Train and U

ne i‘\,”!(:lk?:“

Anomaly Detected > Maintain or not?

1. Introduction called 5M. Industry 4.0 proposed “Modeling,” which
is the sixth M.

The modeling technology of Industry 4.0 can predict
anomalies of the machines in advance. Workers no
longer need to monitor the machines. The human
resources can be brought into product strategy planning
and productivity. Besides, the mean time to repair

(MTTR) of the machines is about one month. The longer

With the rapid development of computer technologies
in recent years, the industry has undergone
a revolution in productivity, business models, and
innovation. The first three industrial revolutions
focused on the improvement of material, machine,
methods, measurement, and maintenance, which is
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the machine tool is repaired, the more expensive it will
cost. Furthermore, the deficient products will be dumped.
More seriously, a rolling component failure may cause
industry safety issues, such as the engine failure of
a helicopter. If the machine failure can be predicted in
advance, the order of repairing material and production
can be rescheduled. The repairing cost of machines can be
intensively decreased.

Anomaly detection (AD) is proposed to detect or
even predict whether a machine will be in an abnormal
state. When a machine is in an abnormal state, a set of
representative single points can be captured. However,
most of the anomaly detection models only consider
the case that an anomaly occurs individually or sepa-
rately [1-3], which cause high false alarm rate.
Anomaly detection models should have the ability to
remember the previous data, and to represent the rela-
tionship between the previous events and the current
event [4]. Recurrent neural network (RNN)is widely
used for analyzing the time-series data, thereby achiev-
ing the goal of the AD for machines.

Run-to-failure data is necessary for developing AD
model. Since the average life of the machine is two to
three years, the collection time of data is lengthened. It is
a big challenge to collect run-to-failure data and build the
prediction model for PHM. In this paper, we adopt the
autoencoder of RNN to build the healthy model of
machines. The new data are compared with the healthy
model. If they are not matched, an anomaly is going to
occur. The lack of run-to-failure data can be solved.
Besides, to detect anomalies in real time, we build RNN
anomaly detection model in NVDIA Jetson TX2 as an edge
server. From the experiments, the proposed model can
notify anomaly two hours in advance, and the true alarm
rate is up to 100%. The training time of the proposed model
is almost 120 times faster than the traditional model. The
main contribution of this paper is demonstrating an Edge-
based RNN anomaly detection platform (ERADP) to detect
anomalies in real time for machinery industry.

We cooperate with TongTai Inc., which is the biggest
machine tool company in Taiwan. Equipped ERADP with
machine tools, the cost of repairing and failure products
can be intensively decreased. The price of machine tools
can increase by 6%. ERADP is not only for TongTai, but
also for the manufacturing industry. The annual produc-
tion of machine tools in Taiwan is about 0.4 million units.
If there are 10% machine tools equipped with ERADP, the
revenue of the machinery industry can increase by about
0.27 billion US dollars. ERADP can really make
a significant impact on the machinery industry.

The rest of this paper is organized as follows. Section 2
introduces anomaly detection-based prognostics techni-
ques. Section 3 presents the proposed Edge-based RNN

anomaly detection platform. The experiments and
numerical results are demonstrated in Section 4. Finally,
we give our concluding remarks in Section 5.

2. Related Work

Prognostics and health management (PHM) have
gained much attention in recent years. The goal of
PHM is to maintain the operation of assets and max-
imize the utilization with minimal cost. PHM is so
complicated that we cannot only rely on human experi-
ence. Data-driven approaches are more promising than
human experience. As presented in [5], data-driven
PHM can be applied in industrial domains such as
(1) anomaly detection for aircraft engines and (2) RUL-
driven ranking of locomotives in a fleet. Two popular
data-driven PHM approaches are: (1) predicting the
remaining useful life (RUL) of a machine and (2)
applying anomaly detection (AD) on a machine. RUL-
based prognostics is to use collected data like vibration
signals to predict the RUL of a machine. When the
predicted RUL is below a predefined maintenance
threshold, the machine is regarded as in failure state.
To accurately predict RUL of a machine is very diffi-
cult. Moreover, the maintenance threshold may be
different depending on different working condition of
a machine. For example [6], proposed a complicated
HI-based RUL prediction algorithm to improve the
reliability and availability of a machine. Although the
prediction performance is improved, the maintenance
threshold still depends on manual configuration [7].
Solved the range of features and the failure threshold
determination issues in the prediction process of RUL.
In addition, run-to-fajlure data is necessary to train
RUL-based models. During the process of collecting
run-to-failure data, a machine may face the situation
of abnormality, such as impulse signals, before it fails.
Therefore, AD-based approaches, which aim to detect
anomalies in real time, are more suitable for machine
tool industry compared to RUL approaches.

In the machine tool industry, most data are labeled
as the normal state and only a few data are labeled as
the abnormal state. This is called data imbalance issue.
In [8], a soft-ensemble and threshold-moving method
was proposed to solve data imbalance issue in cost-
sensitive neural networks. Cost-sensitive learning was
a popular method to solve class imbalance issue in
classification problem. Cost-sensitive learning modified
the cost functions to consider misclassification.
However, in machinery industry, the new sensor data
are continuously generated, the cost function has to be
updated based on the new data. The cost of updating
model is too high.



Generally, machine fault diagnosis approaches are
classified into five groups [9], namely, probabilistic
novelty detection, distance- based novelty detection,
reconstruction- based novelty detection, domain-
based novelty detection, and information- theoretic
novelty detection. Among them, reconstruction-based
novelty detection takes the imbalanced data issue into
account [10]. Compared two reconstruction-based AD
techniques, one is the simple curve fitting approach and
the other is the NN approach [11]. Compared three
machine learning approaches for anomaly detection
(AD), including support vector machine regression
(SVMR), multilayer artificial neural network (ANN)
model, and Gaussian process regression (GPR). The
result found that NN approaches can define more com-
plex models and NN has the lowest error on average.
Besides, NN is more useful to model data points that are
not correlated. Among different types of NNs, RNN is
widely used for time-series data such as vibration sig-
nals. On the contrary, the long short term mem-
ory anomaly detection (LSTM-AD) approach proposed
by [12] and the encoder-decoder anomaly detecion
(EncDec-AD) scheme proposed by [13] have already
shown that RNN is a vi- able option to model time series
behaviors. Although both LSTM-AD and EncDec-AD
yielded promising results on four small volume of data-
sets, the performance of training model is not discussed.
However, in the scenario of anomaly detection, real-
time detection is necessary. Therefore, we propose
a Edge-based RNN anomaly detection platform to
solve data imbalance issue, increase the accuracy of
anomaly detection and decrease the training time.
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3. Edge-Based RNN Anomaly Detection
Platform

Figure 1 is the system architecture of Edge-based RNN
anomaly detection platform (ERADP). Sensors, RNN
anomaly detection model on cloud servers and inference
on edge servers are three critical elements in the platform.
Sensors are installed on machine tools to collect the status
of machine tools. Sensor data are sent to cloud servers. We
train the model on the cloud servers based on the sensor
data. After the model is built, the model is deployed to edge
servers. New data are sent to edge servers. Edge servers can
detect whether there is an anomaly or not.

3.1. Sensors

To collect the operation status of machine tools, TongTai
Inc. install accelerometers, cur- rent sensors and tempera-
ture sensors on the machine tools. In many cases of PHM
for machine tools, we find that vibration signals can fully
represent the behaviors of machine tools [6,7,14-19].
Therefore, we choose vibration signals from accelerometers
to decrease the volume of collected data and identify the
characteristics of the machine tools. Raw vibration data are
collected, cleaned, extracted, and piped into the cloud
servers. We obtain the features of raw data from Fast
Fourier Transform (FFT) to make model performance
better, as shown in Figure 2. Furthermore, min-max-
normalization is applied to normalize the value of features
within zero to one. In the normalization process, the train-
ing process speeds up and the reconstruction errors can be
measured under a uniform scale.

NCTU Cloud Server

Edge Server:
Nvidia Jetson TX2

N

Anomaly Detected

—=> Maintain or not?

Figure 1. The system architecture of edge-based RNN anomaly detection platform.
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Figure 2. The raw vibration data transform to frequency domain.

3.2. RNN Anomaly Detection Model on Cloud
Servers

We train a RNN anomaly detection model based on the
sensor data in the cloud servers. Since lack of run-to-
failure data problem, we build reconstruction-based
novelty detection model by RNN. In other words, we
create a healthy model of machine tools. The new data
are compared with the healthy model. If they are not
matched, the anomaly is going to occur.

RNN is widely used for time-series data such as
temperatures, currents, or vibrations. As mentioned
in [12,13], the autoencoder architecture of RNN is
suitable for anomaly detection and can overcome the
data imbalance issue.

An autoencoder is a type of neural network, which is
composed of an encoder network and a decoder net-
work. In the encoder network, an input vector i of
length m is passed into several encoder layers Enc;
and encoded into a feature vector f. In the decoder
network, the feature vector f is passed through several
decoder layers Dec; and decoded into an output vector
o of length #, as follows:

f = Encp(EnCp_l(...EHC2(E1’IC1(i>))) (1)

0 = Decy(Decy(...Decy(Dec(f)))) (2)

An autoencoder is shown in Figure 3, consisting of
two layers of the encoders, two layers of decoders, and
two-dimension latent vectors. Based on [12] and [13],

.Sy
=}

Enc, Decy

Figure 3. An illustration of autoencoder.

we train a health model by RNN based on the normal
data. The training target is to minimize the Euclidean
distance e between i and o, where the vector
length m and » are the same. During the training, the
model will learn how to reconstruct the input data.

)

We adopt the sequence to sequence type [20] to
build the autoencoder network. Both encoder and
decoder networks are composed of two-layered LSTM



cells with dropout rate 10% and time step size 32 [21].
The output size of all cells is 64. The size of the
embedding vector for each symbol is 128. Models are
trained with a fixed learning rate of 0.001 in 500
epochs.

3.3. Inference on Edge Servers

After the model is trained, we deploy the model to edge
servers to decide whether there is an anomaly in real time.
We adopt NVDIA Jetson TX2 as an edge server, as shown
in Figure 4 New data are fed into a sufficiently trained
autoencoder model on edge servers, and the reconstruction
error e will be evaluated. To infer whether a machine tool is
broken, new data are fed into a sufficiently trained auto-
encoder model, and the reconstruction error e will be
evaluated. If the reconstruction error is smaller than
a predefined anomaly threshold T, the new data will be
categorized as usual. Otherwise, it will be categorized as
anomalous.

The anomaly threshold T is derived from the following
process. During the training, reconstruction errors e,
and e,"” are evaluated at epoch ¢, where e, is from normal
data and e, is from anomalous data. Then, the specific
epoch ' is picked when e,"”is minimal. Finally, the recon-
struction error of normal data at epoch ¢ is regarded as T.

t' = arg; min ¢! (4)

T=e¢l") (5)

a

4, Experiment

In this section, we give some numerical results to
demonstrate the inference accuracy and the training
time of the proposed model.

Figure 4. NVIDIA Jetson TX2.
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4.1. Data Preparation

Since the dataset of TongTai Inc. is confidential, we
adopt the dataset of IEEE Prognostics and Health
Management (PHM) Data Challenge in 2012 [22] to
evaluate ERADP. The dataset include six training sets
and 11 testing sets. Six training sets are adopted to train
RNN anomaly detection model on cloud servers. After
the model training is trained, the well trained model is
moved to edge server to detect the anomaly in real time.
Horizontal and vertical vibration signals and tempera-
ture values are collected from sensors deployed on roll-
ing bearings in these dataset. The vibration signals are
collected with frequency 25.6 kHz, and temperature data
are sampled with frequency 10 Hz.

As mentioned before, since vibration signals can
represent machine behaviors [6,7,14-19], we only take
vibration signals into account to decrease the volume
of data and increase the efficiency of model training.
To capture more data feature, the raw vibration signals
are transformed into frequency domain by FFT and the
dominated frequencies are selected as training feature.
Min-max normalization is applied to training and test-
ing data for improving training speed and providing
a uniform measurement scale for inference.

Labeling data is necessary for training AD-based
models by supervised learning. We label the top 90%
data of the whole machine life as normal data and the
remaining 10% data as anomalous data. The normal
data are the input of designed RNN autoencoder
models.

4.2. Numerical Results and Observation

4.2.1. Inference Result
The 11 testing sets of the dataset is adopted to evaluate
the performance of inference. Mean squared error
(MSE) in Eq. (3) is used as performance metrics.
Figure 5 is the inference result of one of the testing
set. In Figure 5, the upper part shows the raw vibration
signals and the lower part shows the trend of recon-
struction error to demonstrate when ERADP can
detect anomaly. Both parts share the same timeline
and the time unit is 390 ms. The raw vibration signals
are marked in red color when reconstruction error is
higher than the anomaly threshold. The vertical dotted
line represents the time that real anomaly happened.
The reconstruction errors are averaged with window
size 15 to smooth unstable peaks and improve the
inference accuracy. We repeat the experiment 40
times to get the average.

The inference result of traditional RNN regression
model is shown in Figure 5(a), and the result of the
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Figure 5. Comparison of inference results.

proposed model is shown in Figure 5(b). We can
observe that the proposed model can achieve 100%
true alarm rate and the anomalies are predicted
between 148.64 min and 152.72 min before anomalies
happen. The average time of detecting anomaly is
150.68 min. The standard error is 1.02 min.
Therefore, the confidence of the proposed model is
95%. On the contrary, the reconstruction error of the
traditional model increases steeply and the anomalies
are detected after they have already happened. It
implies that the proposed model can identify and pre-
dict anomalies as well, which is of importance in the
machine tool industry.

4.2.2. Training Performance

As shown in Figure 6, EncDec-AD takes 185 epochs
about 17,880 s to train a model that can identify anoma-
lies. Otherwise, the proposed model takes only one epoch
about 150 s to finish model training. The proposed model
speeds up model training about 120 times faster.

4.2.3. Inference Benchmark

The proposed model is not only lightweight but also
can identify the status of machine tools in real time.
The storage size of the proposed model is only 18.1
MB. It is suitable to be deployed on an embedded
system or the edge server of machine tools. The
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Figure 6. Comparison of training performance.

inference time of different devices are measured, as
shown in Table 1. Two PC-level CPUs, two general-
purpose GPUs and one embedded GPU from NVIDIA
Jetson TX2 module are tested. The Jetson TX2 is tested
under Max-N mode, which is of full performance. In
this benchmark experiment, dominated frequencies of
vibration signals with batch size 128 are tested.

The inference process are divided into three phases.
In phase I, the trained model is loaded from disk to
memory and constructed according to the stored meta-
data such as model weightings and hyperparameters.
Once the model is built, it is ready for inference. In
phase II, a batch of sequential sensing data are fed into
the model for initial interference. Phase III is similar to
phase II, while some parameters are cached. Therefore,
the inference process in phase III takes less time than
that in phase II.

From Table 1, Phase I seems to be a bottleneck.
However, the computational time of phase I and
phase II are one-time overhead. After the initial infer-
ence, all the remaining inferences are in phase III and
will not take unreasonably long time. Unlike the expec-
tation in most cases, the results of phase III show that
CPUs take less time than GPUs in a significant man-
ner. This is because the recurrent structure of RNN
cannot be computed in parallel. Although ERADP does

Table 1. Inference benchmark of ERADP on different devices.

Load Inference (first Inference (remaining
Device model batch) single batch)
i7-7700K CPU 3322 s 0.98 s 0.15s
i7-8700 CPU 940 s 1.03 s 0.15s
GTX 1060 GPU 3550 s 132s 0.23 s
GTX 1080Ti GPU 3354 s 127 s 0.25s
Jetson GPU 170.63 s 5.53s 1.03s
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not benefit from the powerful parallel computing cap-
ability of GPU, ERADP only takes about 1 s to detect
anomaly. The detection result can be replied to user in
real time.

5. Conclusions

In this work, we propose an Edge-based RNN anomaly
detection platform (ERADP). We adopt the reconstruct-
based method to construct a healthy model of machines
and solve the lack of run-to-failure data issue. From the
experiments, the proposed model can achieve 100% true
alarm rate in anomaly detection and accelerate model
training up to 120 times. Besides, ERADP can help
TongTai Inc. and manufacturing companies easily build
maintenance models. The repairing cost can be saved and
the production can be increased. The price of machine
tools can grow about 6% after ERADP is equipped with
machine tools. The revenue of the machinery industry can
increase by about 0.27 billion US dollars. The competitive-
ness of the manufacturing industry can also be intensively
increased.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is supported by Minstry of Science and
Technology, Taiwan, under the project 106-2634-F-009-
002-CC2.

ORCID

Chia-Yu Lin
Li-Chun Wang
Hong-Han Shuai

http://orcid.org/0000-0002-5106-7286
http://orcid.org/0000-0002-7883-6217
http://orcid.org/0000-0003-2216-077X

References

[1] Chmielewski A, Wierzchon ST. V-detector algorithm
with tree-based structures. Proceedings of the
International Multiconference on Computer Science
and Information Technology, Wista (Poland); 2006.

p. 9-14.
[2] Hawkins S, He H, Williams G, et al. Outlier detection
using replicator neural networks. International

Conference on Data Warehousing and Knowledge
Discovery. Springer; 2002. p.170-180.

[3] Salama MA, Eid HF, Ramadan RA, et al. Hybrid
intelligent intrusion detection scheme. In: Soft com-
puting in industrial applications. New York, NY, USA:
Springer; 2011. vol.96, p. 293-303.



8 (&) C-Y.LINETAL

(4]

(10]

(11]

(12]

Bontemps L, McDermott ], Le-Khac NA, et al
Collective anomaly detection based on long
short-term memory recurrent neural networks.
International Conference on Future Data and
Security Engineering. Can Tho City, Vietnam,
Springer; 2016. p.141-152.

Bonissone PP. Machine learning applications. In:
Springer handbook of computational intelligence.
Springer; 2015. p. 783-821.

Yang F, Habibullah MS, Zhang T, et al. Health
index-based prognostics for remaining useful life pre-
dictions in electrical machines. IEEE Trans Ind
Electron. 2016;63(4):2633-2644.

Guo L, LiN, Jia F, et al. A recurrent neural network based
health indicator for remaining useful life prediction of
bearings. Elsevier Neurocomput. 2017;240:98-109.

Zhou ZH, Liu XY. Training cost-sensitive neural net-
works with methods addressing the class imbalance
problem. IEEE Trans Knowledge Data Eng. 2006;18

(1):63-77.
Pimentel MA, Clifton DA, Clifton L, et al. A review of
novelty  detection.  Elsevier ~ Signal = Process.

2014;99:215-249.

Schlechtingen M, Santos IF. Comparative analysis of
neural network and regression based condition mon-
itoring approaches for wind turbine fault detection.
Elsevier Mech Syst Signal Process. 2011;25
(5):1849-1875.

Elforjani M, Shanbr S. Prognosis of bearing acoustic
emission signals using supervised machine learning.
IEEE Trans Ind Electron. 2018;65(7):5864-5871.
Malhotra P, Vig L, Shroft G, et al. Long short term
memory networks for anomaly detection in time
series. In: Proceedings. European Symposium on
Artificial ~ Neural Networks, Computational
Intelligence and Machine Learning (ESANN). Bruges,
Belium; 2015. p. 89.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-
based encoder-decoder for multi- sensor anomaly
detection. arXiv preprint arXiv:160700148. 2016.
Sardana D, Bhatnagar R, Pavel R, et al. Data driven
predictive analytics for a spindle’s health. In: IEEE
International Conference on Big Data. Santa Clara,
CA, USA; 2015. p. 1378-1387.

Si XS, Wang W, Hu CH, et al. Remaining useful life
estimation-a review on the statistical data driven
approaches. Eur ] Oper Res. 2011;213(1):1-14.

Jin X, Sun Y, Que Z, et al. Anomaly detection and fault
prognosis for bearings. IEEE Trans. on Instrum Meas.
2016;65(9):2046-2054.

Dong L, Shulin L, Zhang H. A method of anomaly
detection and fault diagnosis with online adaptive
learning under small training samples. Elsevier
Pattern Recogn. 2017;64:374-385.

Sakthivel N, Nair BB, Elangovan M, et al. Comparison
of dimensionality reduction tech- niques for the fault
diagnosis of mono block centrifugal pump using vibra-
tion signals. Elsevier Eng Sci Technol Int J. 2014;17
(1):30-38.

Zhang W, Peng G, Li C. Bearings fault diagnosis based on
convolutional neural networks with 2-D representation of
vibration signals as input. International Conference on
Mechatronics and Mechanical Engineering. Elazig,
Turkey.; 2016.

Cho K, Van Merri"Enboer B, Gulcehre C, et al.
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv pre-
print arXiv:14061078. 2014.

Hochreiter S, Schmidhuber ]. Long short-term
memory. Neural Comput. 1997;9(8):1735-1780.
FEMTO-ST. IEEE PHM 2012 data challenge. Online
website; 2012. http://www.femto-st.fr/en/Research-
departments/AS2M/Research-groups/PHM/IEEE-
PHM-2012-Data-challenge.php


http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php

