
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Visualization-oriented Natural Language Interfaces
for Grafana Dashboard

Bo-Yao Tong∗, Ted T. Kuo†, and Chia-Yu Lin∗
Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan

† College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan, Taiwan
Corresponding Author: Chia-Yu Lin (sallylin0121@ncu.edu.tw)

Abstract—Real-time monitoring of individual node statuses is
crucial in distributed systems to promptly identify and address
anomalies and enable effective system management. Due to
the less intuitive nature of traditional form-based methods for
adding charts, there is a growing trend towards integrating
large language models (LLMs) into visualization-oriented natural
language interfaces (V-NLIs) to automate the entire front-end
monitoring process. Although LLMs have advanced significantly,
they still exhibit weaker capabilities in code generation, particu-
larly when visualization platforms need LLMs to generate some
specialized JSON formats for updating dashboards. To improve
the code generation capability of general-purpose LLMs, we
propose a system that allows users to create charts using arbi-
trary natural language. Additionally, concerning the limitations
of LLMs in code generation, we aim to leverage the LangChain
agent to develop a custom toolkit. The LangChain agent will
enable language models to focus on text comprehension while
our tool will handle code generation.

Index Terms—Visualization-oriented natural language inter-
faces, large language model, Grafana, LangChain

I. INTRODUCTION

Traditional DevOps teams commonly utilize various moni-
toring platforms, such as Prometheus [1] and Grafana [2], for
storing metrics and visualizing data. Historically, they have
added panels through platforms, often employing form-based
methods. However, this approach typically necessitates manual
filtering and confirmation of available options, resulting in a
less straightforward and intuitive process. Consequently, there
is a growing interest in integrating large language models
(LLMs) into the front end to enable the generation of charts us-
ing natural language. Nevertheless, applying a general-purpose
language model to generate monitoring graphs involves code
generation, which may have limitations. These limitations
could include susceptibility to issues like version updates or
inaccuracies in data sources.

To tackle these challenges, Chat2vis [3] implemented
prompt engineering techniques to guide LLMs in generating
code. These guidelines encompassed explanations of various
data tables and the necessary packages, aiming to prevent
errors stemming from version updates and ensure accurate data
interpretation by LLMs. Meanwhile, ChartGPT [4] adopted
a strategy combining fine-tuning and prompt engineering.
Their approach to prompt engineering differed in how they
segmented user input into multiple segments to generate corre-
sponding responses, thereby ensuring comprehensive coverage
in tasks like data retrieval and chart generation. However,

in the aforementioned methods, the design of prompts may
encounter token limits, potentially hindering the complete
expression of data meanings and desired code generation. [5]
Grafana official is also working on integrating LLMs into
dashboards, but the graphs generated remain constrained to
time-series data source only from Prometheus.

In this paper, we propose a system to integrate LLMs into
visualization-oriented natural language interfaces(V-NLIs), en-
abling users to create charts effortlessly using natural lan-
guage. In our system, LLMs will no longer handle code
generation; instead, they will capitalize on their proficiency
in language understanding. The system determines the best
approach by comparing tool descriptions with user needs and
generates the appropriate code for the visualization platform.
With our system, we substantially enhance the precision of
language models in code generation scenarios.

II. METHODS

Grafana and Prometheus are currently the most widely
employed monitoring platforms. Mature teams usually have
a reasonably comprehensive Grafana dashboard. A more user-
friendly approach could involve incorporating a text box with
LLMs into their existing dashboard when considering future
maintenance and possible adjustments to particular charts. To
address this need, we have developed a V-NLI that allows
swift integration into existing dashboards, enabling the direct
generation of graphs using natural language commands within
the same dashboard.

A. Visual-oriented Natural Language Interfaces

Fig. 2 shows our interface, which consists of three main
sections. Users can input their requests in the text box without
any constraints, meaning they are not limited by predefined
forms. This allows them to explore data through intuitive
queries using their most familiar natural language, enabling
them to understand the system’s capabilities effortlessly. For
example, a user can simply input “show me prometheus http
requests total” without needing to remember the exact metric
name “prometheus http requests total.” The system identifies
the most relevant metrics quickly and accurately using large
language models (LLM), saving users time spent searching
for precise names. The input is then sent to our servers
via HTTP, where validation checks prompt users to provide
missing required parameters or correct errors. Once validated,

979-8-3503-8684-4/24/$31.00 ©2024 IEEE

2024 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)

465

2024 ICCE-Taiwan 1571009324

1

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 -
Ta

iw
an

 (I
C

C
E-

Ta
iw

an
) |

 9
79

-8
-3

50
3-

86
84

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
E-

Ta
iw

an
62

26
4.

20
24

.1
06

74
28

1

Authorized licensed use limited to: Yuan Ze University. Downloaded on November 02,2024 at 07:39:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The workflow of V-NLIs.

Fig. 2. V-NLIs with user input and generated chart

the query language used to access the desired metrics is
displayed, and the graph is generated in the bottom section
of the interface.

B. LangChain

LangChain [6] is a framework designed for building applica-
tions powered by language models. It supports context-aware
and reasoning applications, providing libraries, templates, and
tools for developing, testing, and deploying applications that
leverage language models. LangChain simplifies the entire
application lifecycle, and provides modules for interacting
with language models, retrieving application-specific data, and
agent-based decision-making.

C. Model and Workflow

The entire V-NLIs process operates as Fig. 1. To enhance
the code generation capability of the GPT-3.5-turbo language
model [7], we implement a LangChain agent between users
and language models. LangChain provides a comprehensive
OpenAI agent and bridges the user and the GPT-3.5-turbo
language model. When a user asks a question, the LangChain
agent processes the query and passes it to the language
model. The agent will instruct the language model to deter-
mine which tools may be required for the users according
to the query’s intent and the description of tools. The tool
description needs to align best with the query requirements.
For example, our toolkit has a tool for drawing basic graphs,
whose description might be something like “Useful for when

users want to display metrics without any custom request.”
The language model successfully utilizes this tool through
multiple experiments when a user query needs to display some
metrics, and it will extract essential parameters, such as the
metrics name required here. The parameters necessitate writing
corresponding descriptions and their variable types so that the
language model knows how to extract the critical parameters
for this tool before using it. Our tool’s content generates JSON
format accepted by Grafana, setting the target property as the
desired metrics name, and updates the results via the Grafana
API on the dashboard for the user to view, as shown at the
bottom of Fig. 2.

In the proposed V-NLIs, the LangChain agent interprets
and presents the model’s output in a user-friendly format,
effectively mediating the interaction between the user and the
language model. Furthermore, Users can communicate with
the language model without being concerned about communi-
cating with it, which can be quickly deployed on their existing
dashboard.

III. DISCUSSION

From Fig. 2, we can see that when the user inputs “show
me prometheus http requests total,” GPT-3.5 generates a line
chart for the specified metric based on the user input and the
default parameters for chart customization. We assume that
if users do not specify the type of chart they want, we will
generate the most commonly used line chart corresponding to
the time series chart in Grafana.

IV. CONCLUSION

In this paper, we proposed a system to integrate LLMs
into V-NLIs, enabling users to create charts effortlessly using
natural language. The proposal suggests using the LangChain
framework to improve code generation with language models.
An agent selects the most suitable tool, and rule-based logic
generates JSON models for the Grafana dashboard update. The
proposed V-NLIs for the Grafana dashboard help users can
rapidly deploy portable monitoring systems on Grafana with
minimal costs.

ACKNOWLEDGEMENTS

This work is sponsored by the National Science and Tech-
nology Council (NSTC) under the projects NSTC 110-2222-
E-008-008-MY3 and NSTC 112-2622-8-A49-021.

REFERENCES

[1] “Prometheus,” https://prometheus.io/.
[2] “Grafana,” https://grafana.com/.
[3] Paula Maddigan and Teo Susnjak, “Chat2vis: Generating data visualiza-

tions via natural language using chatgpt, codex and gpt-3 large language
models,” IEEE Access, vol. 11, pp. 45181–45193, 2023.

[4] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong
Zhang, and Yingcai Wu, “Chartgpt: Leveraging llms to generate charts
from abstract natural language,” IEEE Transactions on Visualization and
Computer Graphics, pp. 1–15, 2024.

[5] “Grafana/Scenes,” https://github.com/grafana/scenes.
[6] “LangChain,” https://www.langchain.com/.
[7] OpenAI, “ChatGPT (3.5) [Large language model],”

https://chat.openai.com, 2024.

4662
Authorized licensed use limited to: Yuan Ze University. Downloaded on November 02,2024 at 07:39:38 UTC from IEEE Xplore. Restrictions apply.

