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Abstract—“Mura” is a phenomenon in which panels have
uneven display defects, irregular shapes, and different sizes. It
is impossible to produce perfect panels on production lines, so
panel inspection is necessary to differentiate between “light
Mura” and “serious Mura” manually. The performance of
conventional defect detection models for Mura detection is
worse since they only differentiate between “normal” and
“abnormal” samples. To reduce human cost and increase the
accuracy of Mura detection, we propose a “ResUnet-GAN with
Dynamic Memory Model,” an unsupervised anomaly detection
method based on a Generative Adversarial Network (GAN) with
a memory module to distinguish panel defects. In the dynamic
memory, we designed a dynamic feature filtering (DFF) method
to choose important features of images, enhancing the ability
to recognize light Mura features of the ResUnet-GAN. The
proposed model can achieve an Area Under Curve (AUC) of
approximately 0.8 for accurate Mura detection. The mechanism
of this paper is novel, and the result contributes to practical
application.

Index Terms—Mura detection, ResNet, U-Net, GAN, dynamic
feature filtering

I. INTRODUCTION

In recent years, Mura defect detection has played an
essential role in panel manufacturing before products are
shipped. The detection must be inspected in detail to ensure
the panels can be used. We hope that AI can help the factory
reduce the human cost of detection.

Generally speaking, two Mura defect detection stations
will be set up in the production line. The first station
usually uses lots of human resources to repair the defects
of all panels. The panels with light imperfections can be
fixed to normal, and those with more severe and unbalanced
luminosity panels should be sent to the next station. With the
development of AI, defect detection is no longer inspected
by people. However, in the past few years, detection can only
be divided into “normal” and “abnormal,” and it takes a lot
of human costs to check whether the panel is standard. To
reduce the work of the first station, we hope the panels can
be divided into “light Mura that can be fixed,” as shown in
Fig. 1 and “serious Mura,” such as the butterfly, as shown in
Fig. 2 before the panels enter the first station to reduce the
human cost.

However, in most cases, the number of serious Mura
samples accounts for very few. So it is difficult to balance
the numbers of light Mura and serious Mura, which leads to
the supervised learning model being hard to classify because
of data unbalancing. It will cause the accuracy of the model
to be significantly decreased.

Fig. 1. Light Mura.

Fig. 2. The serious Mura with butterfly.

Anomaly detection has been rapidly developed under deep
learning in response to this situation. Due to Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM) have already
achieved specific results in technology.

We designed the model using few and unlabeled data to
identify “light Mura” and “serious Mura.” In this study, we
take light Mura as standard data to train the model. Due to
Mura being too small, it is hard to detect, so the panel’s
image will be preprocessed first by using a sliding crop to
crop the images into several segments, which will be our new
data. Finally, training an unsupervised GAN with a dynamic
memory module based on ResUnet (Mem-ResUnet-GAN)
and the Area Under Curve (AUC) can go up to almost 0.8.

II. RELATED WORK

The traditional defect detection method used classification
models to classify different defects [1]. The network structure
was divided into a de-noising network and a classification
network. However, when the abnormal data was insufficient,
the classification model could not be trained with high
quality. Therefore, unsupervised learning was proposed to
take normal data for model training.

[2] proposed GANomaly based on AnoGAN and
Efficient-GAN-Anomaly. When training the normal data in
the autoencoder, it encoded and decoded abnormal data that
had never been seen before. The potential space difference
was often significant after the encoding processes. When the
difference was larger than the threshold, it was considered an
abnormal sample. Since the details and the texture features
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Fig. 3. The architecture of Mem-ResUnet-GAN.

of the image were mainly located at the bottom layer of
the CNN, and the advanced abstract features were located
at the top layer. The latent vector did not contain enough
features, so the reconstruction easily lost details. Therefore,
Skip-GANomaly [2] was inspired by U-Net and adopted
skip-connection to connect each down-sampling layer in the
encoder network to its corresponding up-sampling decoder
layer.

[3] proposed a memory-augmented autoencoder
(MemAE) to improve the reconstruction ability of AE
by adding the memory module to store the prototypical
elements of the normal data and utilize a differentiable
hard shrinkage operator to induce sparsity of the memory
addressing weights, which let the memory items be close to
the query in the feature space. However, the threshold of the
hard shrinkage operator was set to be fixed. It could reach
a good result, but it could not be better. So, we combined
ResUnet-GAN with a memory module and used dynamic
feature filtering (DFF) that could solve this problem.

III. THE ALGORITHMS

This project intends to design a “Mem-ResUnet-GAN for
Mura defect detection” to identify light Mura and serious
Mura. In the architecture shown in Fig. 3, we use the “data
with a light Mura” to treat such data as standard data and
input it into the GAN with a memory module to train a
model of a healthy panel. During testing, since the training
data is all standard images, prototypical features are stored in
the memory. Therefore, when the input is a severely flawed
panel, the reconstructed image will still reconstruct a near-
healthy image. It will cause the reconstructed and original
images to make a big difference and help distinguish.

A. Image Preprocessing

According to the previous experiments, we found that the
size of the Mura is about 64 x 64, so we used the sliding
crop to crop the image from 512 x 512 into multiple 64 x
64 segments to be our new dataset, as shown in Fig. 4. In
this way, it can find the Mura in the panel precisely.

B. Mem-ResUnet-GAN for Mura Defect Detection

Mem-ResUnet-GAN is constructed based on ResUnet-
GAN [4]. The preprocessed light Mura image is the training
data that is constructed based on ResUnet-GAN.

1) Encoder: It uses the pre-trained model ResNet50
model to extract the features. The advantage of the ResNet50
is that it consists largely of the network layer. It has a more
vital ability to extract the features and can get a better feature
vector to help us get a reconstructed image closer to the
original.

2) Memory: We design memory proposed by [3]. In our
model, the memory M ∈ RN×K where N stands for the
size of memory, and K stands for the dimension of the
latent vector z, is design to store the latent features vector
z ∈ RK extracted by the encoder as shown in Fig. 3. And
the weight wi of the corresponding features to be a metric
to determine which feature helps construct the image closer
to the original image. We compute each wi via a softmax
operation as follows:

wi =
exp(d(z,mi))∑N
j=1 exp(d(z,mj))

(1)

where d(·, ·) denotes a similarity measurement, refer to the
[3], we define d(·, ·) as cosine similarity:

d(z,mi) =
zmT

i

∥z∥∥mi∥
(2)

In the training phase, to restrict the use of memory items
for reconstruction, a method for dynamic memory (See
Section C) to effectively utilize the memory is proposed so
that model can use the most representative standard features.

3) Decoder: The decoder adopts the skip-connection
method so that each down-sampling layer in the encoder net-
work is connected to its corresponding up-sampling decoder
layer. The use of this skip-connection allows for excellent
and stable reconstructions in both high-dimensional image
space and low-dimensional latent vector space encoding to
improve overall model resolution accuracy.
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Fig. 4. Image preprocessing.

4) Discriminator Network: As an adversarial network,
the primary method to discriminate between the original
and the reconstructed image is conducting confrontation and
obtaining the anomaly score to judge whether the image is
defective. It uses the DCGAN model [5] and the structure
of the Depth Separable Convolution [6] for optimization,
reducing the number of parameters of the network model.

C. Dynamic Memory
Using the limited number of standard features for re-

construction helps the reconstructed image have significant
differences from the original. The reason is that we use light
Mura as normal data for training; there may still be some
features with flaws. If we take all of the memory items to
reconstruct, it will cause the tiny defective features to be
restored.

Therefore, we proposed a dynamic feature filtering (DFF)
method that can utilize memory items effectively. DFF sets
a threshold to filter features based on each image. Because
every feature has its corresponding weight, we will select
how many percentages of features will be used. It can filter
the features that are not important, helping us to distinguish
the panel with light Mura or serious Mura. After doing the
filtering, we will take the features that store in memory items
as shown in Fig. 6. The weight ŵi calculated after filtering
as shown in Eq. (3)

ŵi =
max(wi − p, 0) · wi

|wi − p|+ ε
(3)

where max(·, 0) is called the ReLU activation, p is the first
few percentiles features we take in this image, and ε is a
very small positive scalar.

IV. EXPERIMENT

In this section, we demonstrate the effectiveness of our
proposed method. We use dynamic memory and set different
percentages threshold to compare whether we take the few
features that help reconstruct Mem-ResUnet-GAN.

A. Data
We are using high-resolution datasets to do experiments

from the manufacturer. And we took 4835 standard images to
be a training dataset, 541 standard images, and 143 serious
Mura images to do the testing. The original size of high-
resolution datasets is 1920 x 1080, and for the convenience
of training, we resize the original images into 512 x 512.
Then, using sliding crop to turn images into multiple sizes
of 64 x 64 small pictures, randomly selecting 64 images for
training.

TABLE I
THE ACCRURACY OF MEM-RESUNET-GAN WITH DIFFERENT

THRESHOLD

Threshold Precision Recall TNR AUC
20% 0.496 0.496 0.841 0.696
10% 0.609 0.483 0.902 0.734
5% 0.567 0.562 0.864 0.769

TABLE II
ACCURACY COMPARISON WITH DIFFERENT MODELS

Model Precision Recall TNR AUC
Skip-GANomaly 0.036 0.852 0.163 0.480
ResUnet-GAN 0.546 0.660 0.657 0.648

Mem-ResUnet-GAN w/ DFF 0.567 0.562 0.864 0.769

B. Model Parameter

In the part of the model, we used the Mem-ResUnet-GAN
model. Setting batch size = 64, stride = 32 for sliding crop
and Epoch = 400, lr = 1e−4, and the memory size = 2000.

C. Evaluation Index (AUC)

AUC represents the area under the Receiver Operator
Characteristic (ROC) curve, a standard statistic that can stand
for the predictive ability of a classifier. And ROC curve
takes False Positive Rate (FPR) as the X-axis and True
Positive Rate (TPR) as the Y-axis, which means the relative
relationship between TPR and FPR of a classifier.

We are taking anomaly scores to evaluate whether the
images are defective or not. The method is referred to [4]. In
the testing phase, we do the same processing to the testing
datasets. Due to the stride setting 32, it will generate 256
images. We take those small images to count anomaly scores
and take the highest score as a representation.

D. Experiments

We take the top 20%, the top 10%, and the top 5%,
respectively. The experimental results are shown in Table I.
It can be known that the smaller the threshold is, the more
correlation memory items are taken out, and the AUC is also
higher.

E. Comparison

We also compare different models to verify whether our
model is more prominent. This section presents the ex-
perimental results of Skip-GANomaly and ResUnet-GAN
without image preprocessing.

In Table II, we can see that the Skip-GANomaly only gets
AUC 0.48. Although its recall has 0.852, it can’t distinguish
the standard images. However, ResUnet-GAN can go to
0.648; its powerful image feature extraction ability helps us
restore the image better when reconstructing it.

We also did the Mem-ResUnet-GAN experiment. It can
be seen that after adding the memory module, the AUC has
been significantly improved by 12.1%. It can be seen that
the memory module can help to better distinguish between
light Mura and serious Mura.
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Fig. 5. Memory module.

Fig. 6. Feature filtering.

TABLE III
THE EFFECTS OF MEMORY IN MEM-RESUNET-GAN

Model Precision Recall TNR AUC
Mem-ResUnet-GAN 0.514 0.576 0.538 0.738

Mem-ResUnet-GAN w/ DFF 0.567 0.562 0.864 0.769

In addition, we also compared Mem-ResUnet-GAN with
DFF or not. From Table III, it can be seen that the AUC
when DFF is not used is only about 0.738, but after adding
DFF, the overall AUC is increased to 0.769, an increase of
3.1%.

V. CONCLUSION

We proposed a Mem-ResUnet-GAN with dynamic mem-
ory to accurately distinguish “light Mura” and “serious
Mura.” The sliding crop pre-process method and GAN with
the memory module were designed to increase the model
performance. In the encoder part, we added the memory
module to store the prototypical latent features vector and
used DFF to keep the most important features to help the
decoder reconstruct the image. The AUC of the proposed

model can reach almost 0.8. The proposed ResUnet-GAN
with dynamic memory cannot only filter the important fea-
tures of light Mura but intensively improve the performance
of Mura inspection.
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