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Abstract—Deep learning for defect detection has become a
critical imperative in contemporary electronics manufacturing.
We propose an inpainting-based anomaly detection system to
identify defects without labeled defects. An image inpainting
model, which discerns disparities between the original and
restored versions of the defective image, is designed as the
core of our methodology. To further address issues related to
reconstructing asymmetric images with defects, we incorporate
self-supervised learning (SSL) to extract a broader spectrum
of features. In experiments, we compare the proposed method
to state-of-the-art models based on MVTec open dataset. Our
proposed method can achieve a best performance of 97%, and
surpasses the SOTA model by a margin of 57%.

Index Terms—Defect detection, image inpainting, self-
supervised learning

I. INTRODUCTION

In electronics manufacturing, defect detection is a critical
step in ensuring product quality and reliability. Traditional
inspection methods rely on manual visual inspection. How-
ever, in addition to incurring high labor costs and showing
low efficiency, manual inspection can also suffer from in-
consistent inspection standards. Another approach involves
the use of an AOI machine for defect determination, yet
the accuracy of AOI detection is low, and it comes with an
extremely high false alarm rate, necessitating a substantial
amount of manual re-inspection. Therefore, deep learning
becomes the solution to efficient defect detection.

Many supervised and unsupervised defect detection mod-
els have been proposed. Supervised classification models
extract defect features to distinguish defective from normal
data, which demands abundant labeled data for defect learn-
ing [1], [2]. As a result, we have chosen an unsupervised
learning approach. Among the unsupervised methods for
the determination of defects, the commonly used technique
is the generative adversarial network (GAN) [3]. These
methods leverage the GAN architecture for image defect
detection. They mimic the characteristics of the normal
class and determine defects by reconstructing them based
on differences between normal images and original images
[4], [5]. Another notable technique is image inpainting,
which involves reconstructing the mask area by repairing
the defective region through model training [6]–[8]. The
image inpainting model learns to rectify it by referencing
surrounding intact areas, thus restoring the image. Moreover,
image inpainting not only corrects localized defects but also
preserves the overall semantic coherence of the image, even
in complex scenes.

Current image inpainting models excel at recovering
masked regions and accurately identifying defect classes

by contrasting them with the original image. However,
predetermined repair zones in numerous defective images
often exhibit notable dissimilarity from their adjacent sur-
roundings, featuring asymmetry and incompleteness of the
image. This poses a challenge for the inpainting model in
effectively repairing such defective areas.

In this paper, we propose an inpainting-based anomaly
detection system with self-supervised learning, where the
defective part of the image mask is used in conjunction with
surrounding points to reconstruct the defective image. In
addition, due to the potentially complex and asymmetric na-
ture of the data backgrounds, we incorporate self-supervised
learning (SSL) to extract a broader spectrum of features.
This amalgamation serves to facilitate a more comprehensive
defect repair and, in the following, improves the precision of
defect detection. The MVTec anomaly detection open dataset
[9] is used to evaluate the performance of the model for
verification.

The results of our proposed method, especially in terms
of recall, can reach a best performance of 97%. This per-
formance surpasses the ShiftNet [10] model by a margin of
57%.

II. RELATED WORK

Within anomaly detection methods, a prevalent approach
involves training Generative Adversarial Networks (GANs)
on normal images [4], [5], [11]. Using normal images during
training, the model learns to reconstruct normal images.
When presented with a defect image, the defective portion
is removed. The discrepancy between the input defect and
the reconstructed image is then used to identify the defect.

In methods such as those proposed by [6]–[8], image in-
painting is used for defect detection. This involves restoring
the defective image to a state that resembles a normal image.
Subsequently, the area surrounding the mask is utilized to
repair the masked region. This transformation turns the de-
fect into a normal image, resulting in a discernible difference
from the original image. Thus, enabling the identification of
defects and normal images.

Recent years have witnessed notable advances in image
painting, as demonstrated by works like [7], [10], [12] that
extend the U-Net architecture in various ways. Moreover,
the contextual attention of transformer-based architectures
has been introduced by [13], [14]. The research carried out
by [8], [15]–[19] extends the application of transformers to
image inpainting. These approaches focused on inpainting
specific mask regions, employing adversarial training to
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Fig. 1. The overview of the proposed framework.

enhance inpainting network performance. However, existing
image-inpainting techniques still face challenges in preserv-
ing the global semantic structure and capturing intricate
texture details in complex images.

Furthermore, [20] presents the application of self-
supervised learning in image classification. Self-supervised
learning is a powerful paradigm that utilizes unlabeled data
to acquire meaningful feature representations. The study
by [21] focused on predicting spatial relationships between
patches in an image. This involved dividing the image
into patches and selecting a pair of patches within the
image. Then, one patch was used to infer the relative spatial
positioning of the other patch. Similarly, [22] divides the
image into patches, disrupts the order of these patches, and
expects the model to recognize the composition distribution
of the patches, arranging them in the correct order. Funda-
mentally, these methods constitute a self-supervised learning
approach. The models extract information from the intrinsic
characteristics of the image, eliminating the need for external
annotations.

Other methods, such as [23] and [24], employed differ-
ent transformations to maximize cross-correlation, capturing
shared information. The integration of self-supervised learn-
ing into our system enhances its ability to extract features
from vast amounts of unlabeled data. This newfound un-
derstanding contributes to improved performance in various
tasks, showcasing the versatility and effectiveness of our
approach.

III. INPAINTING-BASED ANOMALY DETECTION SYSTEM

The proposed inpainting-based anomaly detection system
with self-supervised learning is shown in Fig. 1, encom-

passing image inpainting model, SSL pre-training, and the
anomaly detection stage.

A. Image Inpainting Model
The image inpainting model is trained with normal im-

ages. The model reconstructs the images with defects to
resemble a normal image state. Thus, we can compare the
difference between the reconstructed and original images
to identify defects. Fig. 2 and Fig. 3 visually elucidate
our image inpainting architecture, which includes the rough
network and the refinement network.

1) Rough Network: The rough network, employing the U-
Net architecture, serves as the initial stage in reconstructing
the input image Igt, producing the output image Ip. It gains
an advantage from pre-trained encoder weights acquired
through SSL pre-training during initialization. The applica-
tion of self-supervised learning in this context augments the
image inpainting model’s comprehension of the intrinsic data
structure, enhancing its capacity to capture local features
effectively.

2) Refinement Network: The refinement network im-
proves the smoothness and coherence of the repaired pixels
while improving the correlation between each repaired patch
in the designated repair area. Drawing inspiration from Liu
et al.’s methodologies [14], we emphasize the significance of
coherent semantic attention in image inpainting tasks. This
strategy revolves around establishing a coherent semantic
attention layer (CSA) within the refinement network. The
CSA layer identifies the most analogous pixel for each
pixel in the missing region concerning the pixels in the
known region, as shown in Fig. 4. The meticulous patch-by-
patch repair process utilizes the most similar feature pixels
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Fig. 2. Rough network architecture of image inpainting.

Fig. 3. Refinement network architecture of image inpainting.

in the surrounding area, ensuring that each repaired patch
maintains high relevance to the preceding patch throughout
the restoration process. The correlation among the process of
evaluating the generated patches is expressed in Equations
1 and 2, which indicates the cross-correlation between each
patch mi in the set M and its corresponding patch m̄i in
set M̄ , effectively generating a vector of values. Within set
M, the patch located in the upper left corner represents
the initial value, denoted as mi−1, and the next patch mi

will add the features closest to the cross-correlation of the
previous patch, and so on. For each generated patch mi,
we assign it the maximum cross-correlation value Dmaxi

using the most similar patch m̄i. Consequently, the CSA
layer plays a pivotal role in fostering meaningful connections
and context awareness during inpainting. The outcome is
a seamlessly integrated repaired area that blends with the
surrounding content, resulting in a visually believable and
coherent repaired image.

Dmaxi =
⟨mi, m̄i⟩
∥mi∥∥m̄i∥

(1)

Dadi
=

⟨mi,mi−1⟩
∥mi∥∥mi−1∥

(2)

3) Loss Functions: We use the reconstruction loss and
consistency loss in the image inpainting model. The recon-
struction loss, represented as Lr in Equation 3. We opt for
the L1 distance, commonly known as the average absolute
difference. This loss metric quantifies the pixel-level dis-
parity between the inpainted image and its corresponding
ground truth.

Fv() denotes the extraction of high-level features from
the original image using the pre-trained VGG-16 model,
which has been pre-trained on ImageNet. The consistency
loss, denoted as Lc in Equation 4, involves calculating the
L2 distance between the features extracted by Fv() and those

Fig. 4. The coherent semantic attention layer.

obtained from the CSA layer in the encoder (expressed as
CSAe()). In addition, it calculates the L2 distance between
Fv() and the corresponding layer of the decoder of the CSA
layer (expressed as CSAd()). This process contributes to
enhancing the similarity to the original image.

Lr = |Ip − Igt|+ |Ir − Igt| (3)

Lc =
∑
y∈M

(
∥CSAe(Ip)y − Fv(Igt)y∥22+

∥CSAe(Ip)y − Fv(Igt)y∥22
(4)

B. SSL Pre-training Stage

Given the intricate nature and inherent asymmetry within
our data, we integrate a self-supervised learning (SSL)
approach to empower our model with the ability to adeptly
extract and represent nuanced features. We design an initial
pre-training phase, drawing inspiration from the Barlow
Twins framework proposed by Zbontar et al. [23]. As shown
in Fig. 5, input images are subjected to various distortion
methods, generating two distorted samples from a single
picture. These samples serve as inputs to two identical net-
works, and the objective function is computed by assessing
the cross-correlation matrix between the embedding vectors
produced by these networks. By this process, the model
can extract intricate feature representations from unlabeled
image data.

To align the U-Net encoder framework employed in
the rough network, we modify Barlow Twins to U-Net
architecture. The features are transformed into embedding
vectors through two identical network architectures. Both
architectures employ the U-Net encoder, followed by three
linear layers with batch normalization after the initial two
linear layers, and rectified linear units for activation.

The input image undergoes a random transformation,
resulting in two distorted images labeled Y A and Y B .
Subsequently, two sets of identical network architectures are
employed to obtain the embedding vectors ZA and ZB . The
cross-correlation matrix for these output embedding vectors
is then computed.

The cross-correlation matrix Cij between the two embed-
ding vectors ZA and ZB is calculated using Equation 6. The
loss function, denoted as LBT and defined in Equation 5,
aims to align the cross-correlation matrix with the identity
matrix. The objective is to maximize the preservation of cru-
cial sample features, enhancing similarities, and discarding
unnecessary features.
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Fig. 5. The concept of the pre-training architecture.

The U-Net model in image inpainting is initialized with
pre-trained encoder weights obtained during the SSL pre-
training stage. This involves transferring weights from the
entire encoder network to initialize the U-Net architecture
during the image repair stage, providing a foundation of pre-
trained weights.

Through this self-supervised learning approach, our model
gains a profound understanding of the inherent data struc-
ture, thereby improving its capability to capture local fea-
tures with increased precision.

LBT :=
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (5)

Cij :=

∑
ZA
i ZB

j√∑
(ZA

i )2
√∑

(ZB
j )2

(6)

C. Anomaly Detection

The image inpainting process involves repairing missing
or damaged segments within the image. As a consequence
of defect repair, the resulting image will naturally differ
from the original version. Therefore, we employ a method to
evaluate the defect and normal data within the input image
by calculating dissimilarity metrics between the original and
the reconstructed image. Subsequently, on the basis of this
comparison, we identify the defect class.

In our detection formula (specified in Equation 7), we
integrate the perceptual loss function [25]. This function
considers the perceptual quality of the image, in order to
better align with human visual perception.

To quantify the dissimilarity between two images, we
utilize a pre-trained network. Specifically, we employ the
pre-trained SqueezeNet [26] to capture features from the
seventh layer of the network based on the provided images.
The formulation, denoted as Fs, seeks to minimize the L2
distance in the feature space between the original input
image Yhw and the reconstructed image ¯Yhw. Here, h and
w represent the height and width of the image, respectively.

Detect =
1

hw

∑
h,w

∥Fs (yhw)− Fs ( ˆyhw) ∥22 (7)

IV. EXPERIMENTS

To thoroughly evaluate the efficacy of our proposed model
and gauge its proficiency in the classification task, we
employed metrics that included the recall, the true negative
rate (TNR) and computed the area under the curve (AUC).

A. Data Description

We conducted our experiments using the MVTecAD
dataset [9], an open dataset designed for anomaly detection.
This dataset encompasses five textures and ten object cat-
egories in various domains. Our selection of three classes:
Transistor, Hazelnut, and Cable informed by the location
of data defects and the background complexity within the
dataset.

B. Experiments

We compare the proposed model with Skip-GANomaly
[5], ShiftNet [10], and CSA [14]. The result is shown in
Table I. It’s noteworthy that our model excels, particularly
in transistors and cables, which are marked by intricate data
backgrounds. It shows a superior recall compared to other
models, reaching an impressive 0.97 in the cable category.
This performance underscores the efficacy and supremacy of
our proposed model in effectively addressing the challenges
inherent in this dataset.

Fig. 6 presents the results derived from the MVTecAD
open dataset. The first column displays the original image,
followed by the outputs of SkipGANomaly, ShifNet, CSA,
and lastly, our proposed model. It’s noteworthy that while
SkipGanomaly often reconstructs the defect, other image
inpainting models adeptly eliminate the defect. Notably,
our model stands out by showcasing the most thorough
restoration, especially evident in transistor data.

The 2024 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)

127
Authorized licensed use limited to: National Central University. Downloaded on November 06,2024 at 02:05:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Displayed here are sample results from the experimental evaluation of MVTecAD image inpainting.

TABLE I
RESULTS OF MVTECAD.

Data Model Recall TNR AUC
Transistor Skip-GANomaly 0.65 0.58 0.65

Shiftnet 0.55 0.59 0.63
CSA 0.77 0.63 0.77
Our 0.85 0.60 0.82

Hazelnut Skip-GANomaly 0.45 0.58 0.50
Shiftnet 0.96 0.6 0.93
CSA 0.88 0.58 0.88
Our 0.89 0.58 0.87

Cable Skip-GANomaly 0.63 0.60 0.62
Shiftnet 0.40 0.57 0.51
CSA 0.95 0.58 0.92
Our 0.97 0.59 0.95

V. CONCLUSION

We present a novel inpainting-based anomaly detection
system with self-supervised learning. By seamlessly inte-
grating self-supervised learning techniques into the image

inpainting model, we elevate the model’s capacity to ex-
tract pertinent image features during the inpainting process,
thereby enhancing the overall inpainting outcomes. In ex-
periments, we leverage open datasets to validate our model,
and the proposed method surpasses the performance of other
models. In particular, our models consistently achieve a
recall exceeding 0.85, indicative of their robust and steady
anomaly detection capabilities. Moreover, in the cable data,
our approach attains an impressive recall of 0.97.

ACKNOWLEDGEMENTS

This work is jointly sponsored by National Science and
Technology Council (NSTC) under the project NSTC 112-
2622-8-A49-021 and NSTC 110-2222-E-008-008-MY3.

REFERENCES

[1] Chia-Yu Lin, Yan-Hung Chou, and Yun-Chiao Cheng, “A deep
learning-based general defect detection framework for automated
optical inspection,” in IEEE International Conference on Industry
4.0, Artificial Intelligence, and Communications Technology (IAICT),
2023, pp. 332–337.

The 2024 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)

128
Authorized licensed use limited to: National Central University. Downloaded on November 06,2024 at 02:05:55 UTC from IEEE Xplore.  Restrictions apply. 



[2] Shi-Qi Ye, Chen-Sheng Xue, Cheng-Yuan Jian, Yi-Zhen Chen, Jia-
Jiun Gung, and Chia-Yu Lin, “A deep learning-based generic solder
defect detection system,” in IEEE International Conference on
Consumer Electronics-Taiwan, 2022, pp. 99–100.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
“Generative adversarial nets,” Advances in neural information pro-
cessing systems, vol. 27, 2014.

[4] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon,
“Ganomaly: Semi-supervised anomaly detection via adversarial train-
ing,” in Asian Conference on Computer Vision. Springer, 2019, pp.
622–637.
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