
E3-MAS: A Self-Evolution Multi-Agent System
Framework

Ming-Yi Huang, Yao-Zhi Xue, and Chai-Yu Lin
Department of Computer Science and Information Engineering, National Central University, Taiwan

Corresponding Author: Chia-Yu Lin (sallylin0121@ncu.edu.tw)

Abstract—Large Language Model (LLM)-based Multi-Agent
Systems (MAS) have emerged as a powerful paradigm for
solving complex, real-world tasks with tedious workflows and
frequent errors. However, current self-evolution MAS approaches
require extensive manual tuning and lack dynamic adaptation,
precise issue identification, and modular flexibility. This paper
presents E3-MAS, a general-purpose self-evolution framework
that organizes agents into three interacting teams—Execution,
Evaluation, and Evolution. We detail role-level designs (Plan-
ner/Executor/Replanner, Critic/Evaluator, Analyzer/Prompt Op-
timizer) and show how task-aware evaluation drives problem
attribution and prompt refinement. Using a school administrative
assistance scenario (C-Pilot), we demonstrate intelligent search
and pipeline automation. In a leave-application case study, E3-
MAS improves the task progress rate from 0.83 to 1.0 after
one evolution cycle. More broadly, the framework consistently
achieves progress rates exceeding 0.9, reduces manual prompt-
tuning time by over 50%, and enables modular deployment
of MAS applications across heterogeneous environments. These
results highlight the potential of E3-MAS as a scalable and
adaptive paradigm for reliable multi-agent collaboration.

Index Terms—Multi-Agent system, workflow automation, au-
tomated evaluation, self-evolution

I. INTRODUCTION

LLM-enabled agents are increasingly orchestrated as Multi-
Agent Systems (MAS) to address complex, multi-step tasks
requiring planning, tool use, and collaboration. While recent
works explore reflective and self-improving agents, they often
rely on hand-crafted workflows, human-in-the-loop tuning, or
narrow domains, limiting generalization and maintainability.
We target the following question: How can a MAS contin-
ually improve itself with minimal human intervention while
remaining easy to deploy across domains?

Developing a self-evolution MAS stems from the challenges
of real-world applications, such as school administrative task
assistance. In these scenarios, MAS are expected to navigate
and operate websites or internal systems, where tasks involve
fine-grained operational details and multiple sources of po-
tential errors. For example, completing leave applications or
retrieving policy documents often requires precise execution
steps. Without adaptive mechanisms, manual adjustments by
developers become necessary. Such frequent manual tuning
not only causes inefficiency but also increases maintenance
overhead, ultimately limiting scalability.

However, existing approaches to self-evolving MAS still
suffer from critical limitations. First, many frameworks lack
dynamic task adaptation in their evaluation process, leading

to coarse or generic feedback that fails to capture small
operational failures. Second, they provide no mechanism for
precise responsibility attribution, making it difficult to deter-
mine which agent should be refined or replaced after an error
occurs. Third, most designs lack flexible applicability across
domains, as their tightly coupled modules prevent seamless
deployment in heterogeneous environments.

To address these challenges, we propose E3-MAS, a self-
evolution MAS framework that closes the loop between execu-
tion, evaluation, and evolution. The Execution Team carries out
user objectives through planning, execution, and replanning;
the Evaluation Team introduces task-aware rubrics and fine-
grained performance tracking; and the Evolution Team applies
agent-level attribution and problem-driven prompt optimiza-
tion. Together, these teams enable continuous improvement
with minimal human oversight.

Our contributions are: (1) we design a general three-team ar-
chitecture (Execution–Evaluation–Evolution) for self-evolving
MAS; (2) we introduce role-level mechanisms and metrics
for dynamic evaluation and targeted evolution; and (3) we
demonstrate the framework through a school administrative
case study and ablation experiments, showing improvements
in task execution, reductions in manual adjustment time, and
flexible applicability across MAS deployments.

II. RELATED WORK

Traditional approaches frequently add or remove agents to
meet new requirements; however, such reconfiguration ne-
cessitates redefining roles, resynchronizing system states, and
reallocating resources, all of which increase development and
maintenance costs. Moreover, frequent architectural changes
can destabilize collaboration and compromise decision consis-
tency. To address these limitations, prompt optimization allows
agents to adapt behaviors without altering system structure.
Several automated methods have been proposed. Autonomous
Prompt Engineering Toolbox (APET) [1] automatically re-
fines prompts based on task demands, reducing reliance on
human intervention. Dialogue history-based methods, such as
REPROMPT [2], learn from past interactions to iteratively
optimize prompts for improved reasoning. Feedback-driven
techniques, exemplified by PromptWizard [3], employ batch
optimization guided by evaluation signals to dynamically adapt
prompts across domains such as customer service, automated
decision-making, and knowledge retrieval. Compared with
architectural reconfiguration, automated prompt engineering

20
25

 IE
EE

/IE
IE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

-A
si

a
(I

C
C

E-
A

si
a)

 |
97

9-
8-

33
15

-7
40

2-
4/

25
/$

31
.0

0
©

20
25

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

E-
A

si
a6

74
87

.2
02

5.
11

26
35

82

Authorized licensed use limited to: National Central University. Downloaded on January 29,2026 at 18:14:22 UTC from IEEE Xplore. Restrictions apply.

offers lower cost, real-time adaptability, and improved stabil-
ity, thereby enhancing MAS resilience in dynamic settings.

While prompt engineering provides mechanisms for adapt-
ing agent behaviors, its effectiveness depends on reliable
evaluation signals to guide optimization. Evaluating adaptive
agents, however, is challenging due to their non-deterministic
nature and context-sensitive behavior. Traditional evaluation
strategies primarily emphasize task outcomes, which risks
overlooking reasoning transparency and decision consistency.
Human-as-a-Judge evaluations, while valuable, face scalability
and consistency challenges. To overcome these limitations, the
Agent-as-a-Judge paradigm has been proposed, where agents
automatically evaluate the performance of peers. Wu et al.
demonstrated that such evaluations can achieve approximately
90% agreement with human judgment, while also enabling
monitoring of intermediate reasoning steps [4]. Building on
this idea, Arabzadeh et al. introduced the AgentEval frame-
work [5], consisting of CriticAgent, QuantifierAgent, and
VerifierAgent, which collaboratively generate rubrics, quantify
performance, and validate evaluation standards. Similarly, Xia
et al. proposed Evaluation-Driven Design [6], embedding
continuous evaluation throughout the agent lifecycle to ensure
sustained adaptation. These advances provide more transpar-
ent, explainable, and cost-effective assessment mechanisms,
which directly inspire the Evaluation Team design in E3-MAS.
By employing structured rubrics and agent-level critics, the
framework delivers actionable feedback to the Evolution Team,
enabling precise and efficient system refinement.

III. E3-MAS FRAMEWORK

E3-MAS is designed as a modular and self-evolving Multi-
Agent System (MAS) capable of dynamic adaptation, fine-
grained evaluation, and targeted prompt optimization. It con-
sists of three interacting teams—Execution, Evaluation, and
Evolution—that operate cyclically to continuously enhance
task performance, as shown in Fig. 1.

Besides, we implement C-pilot, an execution-oriented multi-
agent system to facilitate administrative tasks on school web-
sites and internal systems. C-pilot demonstrates how modular
role separation within the Execution Team can support both
intelligent information retrieval and workflow automation.

A. Execution Team

The Execution Team is responsible for end-to-end tasks by
coordinating specialized agents:

• Planner: Generates multi-step plans tailored to user re-
quirements and system specifications.

• Executor: Interacts with tools, APIs, and web interfaces
to execute each step.

• Replanner: Intervenes when a failure occurs, revising or
repairing incomplete steps.

This architecture is particularly suited for handling complex
and repetitive processes as well as dynamic and variable
environments. It also retains detailed records of both planning
and execution processes, providing a foundation for subse-
quent evaluation and optimization. Through this mechanism,

the system significantly improves robustness in handling long
workflows and fragile web interactions. For example, in the
school leave application scenario (C-pilot), the Execution
Team can automate tasks such as form filling, certificate
uploading, and workflow submission, demonstrating reliability
and adaptability in real-world applications.

B. Evaluation Team

The Evaluation Team monitors task progress and generates
machine-actionable feedback:

• Critic: Establishes evaluation rubrics based on user input
and the initial plan to review each step of the task.

• Evaluator: Applies task-specific rubrics to provide step-
level progress rates and qualitative feedback throughout
the execution process.

Unlike traditional manual evaluation, this automated process
provides customized evaluation rubrics tailored to each task
and refines them down to the step level, making it particularly
effective for debugging and tracing multi-step workflows. In
addition, each step is fully logged with both the executor
and the execution details, supporting responsibility attribution
and future optimization. This design ensures transparency
in the decision-making process. For instance, in the C-pilot
case, when the system failed to upload a certificate file, the
Evaluation Team was able to quickly identify the root cause
and suggest corrective measures.

C. Evolution Team

The Evolution Team achieves self-improvement through
targeted optimization, with its core mechanism being a trou-
bleshooting process grounded in responsibility attribution:

• Analyzer: Detects issues and attributes responsibility to
the appropriate agent by leveraging evaluation reports and
task trajectories.

• Prompt Optimizer: After responsibility attribution, con-
ducts targeted prompt engineering for the corresponding
agent, introducing refinements such as verification steps,
retry logic, and contextual enrichment.

Completed improvements undergo regression testing and
canary deployment before being integrated into the production
environment. The Evolution Team adopts a “one agent at a
time” adjustment strategy to reduce optimization complexity
and leverages multiple rounds of iterative testing to gradually
improve overall task performance. Continuing the C-pilot
example, the team refined the Pipeline Executor’s prompts by
adding file path verification and retry mechanisms.

D. Key Advantages

The E3-MAS framework provides the following advantages:
• Dynamic Adaptation: Agents possess automated opti-

mization capabilities, adapting to task contexts with min-
imal manual intervention. They can respond immediately
to unexpected errors or environmental changes, ensuring
uninterrupted task execution.

Authorized licensed use limited to: National Central University. Downloaded on January 29,2026 at 18:14:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of E3-MAS.

Fig. 2. The architecture of C-pilot as the Execution Team, comprising a
Planner, Executor, and Replanner.

• Transparent Evaluation: Step-level rubric monitoring
delivers quantitative results, enhancing decision inter-
pretability and execution stability. This prevents black-
box decisions and strengthens system trustworthiness.

• Low-Cost Evolution: Failures can be accurately at-
tributed to specific agents and refined through targeted
prompt engineering. This “single-point correction” re-
duces maintenance costs and risks, shortens iteration
cycles, and accelerates adaptation.

• Cross-Domain Applicability: The modular design al-
lows Execution Teams to be replaced or reorganized
as needed, making the framework applicable across do-
mains such as administrative automation and industrial
processes. Cross-domain migration requires only module-
level adjustments without redesigning the entire system.

IV. EXPERIMENTS

We use C-pilot to validate the E3-MAS framework. The
architecture of C-pilot consists of three core roles: Planner,
Executor, and Replanner, as shown in Fig. 2. The Planner
decomposes high-level user requests into structured task se-
quences. The Executor interacts with online platforms and
system interfaces to carry out each step, including form sub-
mission, document retrieval, and data entry. When execution
errors occur, the Replanner adjusts the workflow dynamically
by revising task steps or introducing fallback strategies. This
design ensures resilience against task failures and reduces the
need for human intervention.

C-pilot supports two major functions: intelligent search
and pipeline automation. Intelligent search lets the system
navigate across heterogeneous sources (e.g., school portals,

databases, and document repositories) to extract relevant in-
formation. Pipeline automation, in turn, allows repetitive and
rule-based administrative tasks to run seamlessly, such as leave
applications, course registration workflows, or batch status
updates. By combining planning, execution, and adaptive re-
planning, C-pilot exemplifies how the Execution Team within
E3-MAS can improve efficiency, reliability, and scalability in
real-world educational environments.

A. Intelligent Search
To evaluate the intelligent search capability of C-pilot, we

design an experiment where the system is tasked with retriev-
ing information related to scholarship applications. Specifi-
cally, the Executor follows the user query: “Please help me
gather information related to scholarship applications.”

During the initial execution, the system fails to extract all
relevant in-page hyperlinks that provide further information,
which results in an evaluation score of 0 for the corresponding
step. The Evaluation Team issues structured feedback high-
lighting the missing hyperlinks and the need for improved
thoroughness in information extraction, as shown in Fig. 3.

Subsequently, the Evolution Team performs attribution anal-
ysis and identifies the root cause as insufficient extraction
logic in the Search Executor. Targeted prompt refinement is
then applied, focusing on hyperlink extraction, completeness
checks, and clearer output formatting. After evolution, the
task completes successfully with all hyperlinks listed, and the
progress rate improved from 0.83 to 1.0, as shown in Fig. 4.

B. Pipeline Automation
C-pilot is further evaluated on pipeline automation through

a school leave application workflow. The user requests a
personal leave between April 29 and April 30, 2025, and
provides a leave certificate file located in a local directory.

The Planner generates a correct multi-step workflow, in-
cluding the document upload step. However, during execution,
the Pipeline Executor fails to upload the leave certificate file,
resulting in a rubric score of 0 and an overall progress rate of
0.83, as illustrated in Fig. 5. The Evaluation Team analyzes
the execution log and suggests verifying file paths, validating
element identifiers, and retrying uploads with proper targeting.

The Evolution Team attributes the failure to the Pipeline
Executor and refines its prompts to include explicit verification
steps, retry logic, and improves error handling. After refine-
ment, the leave-application workflow is completed end-to-end.

Authorized licensed use limited to: National Central University. Downloaded on January 29,2026 at 18:14:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The evaluation result of Intelligent Search before evolution (failure
to list relevant hyperlinks).

Fig. 4. The prompt refinement result and performance improvement after
evolution in Intelligent Search.

The task progress rate increases from 0.83 to 1.0, and upload-
related failures are fully eliminated, as shown in Fig. 6.

V. CONCLUSION

In this work, we proposed E3-MAS, a self-evolving multi-
agent system framework that integrated task-aware evalua-
tion, precise attribution, and modular system design. The
Evaluation Team provided structured rubrics and fine-grained
performance tracking to capture execution quality in detail.
The Evolution Team complemented this process by attribut-
ing responsibility to specific agents and applying problem-
driven prompt optimization, enabling targeted and efficient
refinement. Furthermore, the modular system design allowed
seamless replacement of MAS components and supported
framework-agnostic integration, ensuring flexibility across di-
verse applications. Through these combined mechanisms, E3-
MAS consistently achieved a task progress rate exceeding 0.9,
reduced manual prompt tuning time by more than 50%, and
supported scalable deployment of MAS across heterogeneous
environments. The framework demonstrated how execution,
evaluation, and evolution can be tightly integrated to provide
reliable, adaptive, and efficient multi-agent collaboration.

ACKNOWLEDGMENTS

This work is sponsored by the National Science and Tech-
nology Council (NSTC) under the project NSTC 114-2218-E-
A49-017-.

REFERENCES

[1] D. Kepel and K. Valogianni, “Autonomous prompt engineering in large
language models,” arXiv preprint arXiv:2407.11000, 2024.

Fig. 5. The evaluation result of Pipeline Automation before evolution (failure
to upload certificate file).

Fig. 6. The prompt refinement result and performance improvement after
evolution in Pipeline Automation.

[2] W. Chen, S. Koenig, and B. Dilkina, “Reprompt: Planning by automatic
prompt engineering for large language models agents,” arXiv preprint
arXiv:2406.11132, 2024.

[3] E. Agarwal, J. Singh, V. Dani, R. Magazine, T. Ganu, and A. Nambi,
“Promptwizard: Task-aware prompt optimization framework,” arXiv
preprint arXiv:2405.18369, 2024.

[4] M. Zhuge, C. Zhao, D. Ashley, W. Wang, D. Khizbullin, Y. Xiong, Z. Liu,
E. Chang, R. Krishnamoorthi, Y. Tian et al., “Agent-as-a-judge: Evaluate
agents with agents,” arXiv preprint arXiv:2410.10934, 2024.

[5] N. Arabzadeh, S. Huo, N. Mehta, Q. Wu, C. Wang, A. Awadallah, C. L.
Clarke, and J. Kiseleva, “Assessing and verifying task utility in llm-
powered applications,” arXiv preprint arXiv:2405.02178, 2024.

[6] B. Xia, Q. Lu, L. Zhu, Z. Xing, D. Zhao, and H. Zhang, “An evaluation-
driven approach to designing llm agents: Process and architecture,” arXiv
e-prints, pp. arXiv–2411, 2024.

Authorized licensed use limited to: National Central University. Downloaded on January 29,2026 at 18:14:22 UTC from IEEE Xplore. Restrictions apply.

