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Abstract—We propose a framework for defect detection in
production lines that leverages deep learning models, out-of-
distribution (OOD) detection, and continual learning to address
the challenges of unknown defects and catastrophic forgetting.
The proposed method divides classifier training into chronicle
tasks, each introducing new defect classes and leveraging OOD
detection to classify unknown defects. We evaluate the framework
on a highly unbalanced product defect dataset and demonstrated
that it outperformed existing approaches, improving the average
F-score by 10%. Our method also improve the performance
of the PODNet and DER models, but not the WA model due
to its poor performance on our dataset. These results suggest
that the proposed method has the potential to improve defect
detection in production lines, especially for small-quantity-wide-
variety production scenarios.

Index Terms—Continual learning, out-of-distribution,

I. INTRODUCTION

Defect detection is essential in production lines. AOI has
been traditionally used to detect defects. However, it can only
determine whether products have defects but not categorize
them. Deep learning models have been adopted to classify
defects, but two challenges remain when applying them in
production lines. The first challenge is the presence of outliers
or unknown defects due to increased demand for small-
quantity-wide-variety production. Most models are trained on
closed sets of defects, which can lead to misclassification if
an unknown defect is encountered. The second challenge is
the catastrophic forgetting problem, where the model forgets
accumulated knowledge when learning new ones. We propose
a continual learning with an out-of-distribution (OOD) detec-
tion framework to address these challenges. The framework
leverages OOD detection and continual learning to classify
known and unknown defects. Classifier training is divided into
multiple chronicle tasks, each triggering as enough new defect
classes accumulate. In each task, we classify new defects or
outliers as a designated class, the unknown class, and apply
continual learning to classify them further.

Our framework is verified using a production dataset, show-
ing promising results to outperform existing approaches. This
framework enables manufacturers to improve defect detection
in production lines, especially for the small-quantity-wide-
variety production paradigm shift of demands by staging the
classification of known and unknown defects.

II. RELATED WORK

A. Out-Of-Distribution Detection

Out-Of-Distribution (OOD) detection is a technique used
to identify defects that were not encountered during training.
Various OOD methods employed scoring mechanisms, such as
Maximum softmax probability (MSP) [1], to estimate scores
based on the output of classifiers and determine if the defect
is OOD data. Other methods, like Mahalanobis detector [2],
projected the features onto an embedding space and used
the Mahalanobis distance to identify OOD defects. Auxiliary
datasets were also used to train the models for detecting OOD
data, such as Outlier exposure (OE) [3] and Deep abstaining
classifier (DAC) [4], which trained classifiers with auxiliary
datasets to detect OOD data. DAC had several benefits, includ-
ing detecting a wide range of OOD data, even dissimilar to the
in-distribution data, without requiring excessive computational
resources and complex implementation. Therefore, we have
adopted a similar approach as the DAC for our OOD detection.

B. Continual Learning

Continual Learning-based classifiers aim to learn new
classes without forgetting previously learned knowledge. Ex-
isting approaches could be categorized into three types: replay-
based, regularization-based, and parameter isolation-based.
Replay-based methods stored a subset of previously learned
data to prevent forgetting. However, these methods could be
computationally expensive and required careful data selection.
Regularization-based approaches used additional terms to limit
model growth and prevent catastrophic forgetting. Parameter
isolation-based methods isolated task-specific parameters, pre-
venting forgetting by dividing the network into modules.

Recent works have combined these approaches to improve
the model, e.g., Weight alignment (WA) [5] and Pooled outputs
distillation network (PODNet) [6] integrated replay-based and
regularization-based methods by adding a distillation loss and
training the model with memory. Dynamically expandable rep-
resentation (DER) [7] combined replay-based and parameter
isolation-based methods by freezing past feature extractors,
copying the last extractors for learning new classes, and
combining all features to train the classifier.

III. METHOD

The proposed framework divide the continual learning pro-
cess into sequential training tasks chronically. In the first task,
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the model is trained to classify b classes of defects. However,
during the training, an OOD detector is used to create an
additional class, Other, for OOD defects unlikely to belong
to any of the b classes. In the following tasks, n new defect
classes are introduced along with the previously b known
classes to train the new classifier for (b′+1) classes of defects,
where b′ = b+ n and the +1 represents the Other class.

The problem is set up as follows: a base model M0 trained
by the dataset D0 with the class set C0, which contains b
classes of defects initially. After enough new classes of defects
are collected, a training task, t, starts. Let T represent the task
set of all tasks and Dt be the dataset used in task t. In each
task, the dataset Dt contains n new classes of samples than
Dt−1. The objective of each task t is to help the classifier to
recognize the additional n new classes in Ct while maintaining
the previously learned knowledge to classify the b′(t−1) classes
in Cold, where Cold =

⋃t−1
i=1 Ci.

Our OOD detector is trained following the DAC [4] ap-
proach, but we choose not to use orthogonal datasets. In-
stead, we train the detector using newly collected defects
that were previously unseen by the model. To Other class,
we construct the class sets COOD for each task t, where
COOD =

⋃T
i=t+1 Ci. This approach more accurately reflects

the small-quantity-wide-variety production lines. Our exper-
iments demonstrate that the OOD detector achieved higher
F-scores, even for future scarce defects. Additionally, the
framework leverages WA [5], PODNet [6], and DER [7] as
a baseline backbone to classify incremental unknown classes,
resulting in improved model accuracy.

IV. EXPERIMENTS

We conduct experiments on a highly unbalanced product
defect dataset comprising 35,316 images and 27 classes. To
mitigate the effect of class imbalance, we augment the training
set images using flip, rotate, and lightness techniques for
classes with less than 500 images. We use ResNet18 as the
backbone network and train the model using a batch size of
64 images, randomly resized and cropped into 224x224 pixels
in size, and update by the Adam optimizer with a learning
rate 1e-3 controlled by cosine annealing scheduler for 500
epochs each task. To emulate the small-quantity-wide variety
production scenarios, our OOD detector is initially trained with
b = 16 classes but test with the entire dataset containing full
dataset of 27 classes for its capability to classify the bt classes
and Other for those unseen defects in a task, t. Furthermore,
we incrementally add three new classes, i.e., n = 3, while
keeping 20 images per learned class in the exemplar set to
train the incremental learning model to classify the n classes
while keeping the knowledge of bt−1 classes in each task.

Our framework improves the average F-score by 10% for
all methods, with DER performing the best. Compared to the
original DER, our method increases last accuracy by 9.44%,
average accuracy by 15.7%, and average F-score by 17.07%,
accurately predicting OOD data. Our method also improves
PODNet, but not WA due to its poor performance on our
dataset. We attribute DER’s superior performance to its replay

TABLE I
EXPERIMENT RESULTS

Methods Last Acc. Avg Acc. Avg F-score
WA [5] 55.2 68.36 54.23

PODNet [6] 78.5 81.32 63.07
DER [7] 70.2 79.54 71.54

Ours (WA) 54 65.36 64.06
Ours (PODNet) 76.5 86.36 74.37

Ours (DER) 79.64 95.24 88.61

TABLE II
DER’S F-SCORE W/ AND W/O THE PROPOSED OOD DECTION

Methods Task 1 Task 2 Task 3 Task 4 Task 5
DER [7] 43.4 15.75 12.92 5.78 5.47

Ours (DER) 91.09 83.87 75.28 60 57.46

and parameter isolation approach. Table I summarizes the three
methods’ performance, while Table II compares OOD with
DER F-score with and without our training method, showing
an improvement of at least 47% for each task.

V. CONCLUSION

We proposed a framework to detect out-of-distribution
(OOD), and address the challenges of unknown defects and
catastrophic forgetting for production lines. The experimental
results showed that our framework generally improved the
performance of existing continual learning methods. In the
future, we can enhance the model to handle the defect datasets
that contain subtle differences and cannot be classified well.
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