2025 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan) | 979-8-3315-8741-3/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICCE-Taiwan66881.2025.11207976

2025 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)

AutoDevFlow: A Multi-Agent System for
Automated Development Lifecycle Management

Yu-Hxiang Chen, Wei-Hsiang Sung, and Chia-Yu Lin
Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
Corresponding Author: Chia-Yu Lin (sallylin0121 @ncu.edu.tw)

Abstract—Digital transformation forces enterprises to adopt
agile Continuous Integration/Continuous Deployment(CI/CD)
pipelines for competitiveness. However, traditional tools like
Jenkins and GitHub Actions rely on manual configurations,
causing errors in code migration, inefficient debugging, and
complex multi-cloud deployments. To address these issues, we
introduce AutoDevFlow, an innovative LLM-powered multi-agent
system that fully automates the software development lifecycle.
Through initial task analysis by the Control Layer and divi-
sion of labor among the four agent teams of the Processing
Layer, AutoDevFlow enables accurate, scalable, and adaptive
deployments. Experiments show robust error correction, effective
cross-language conversion, and automatic deployment, reducing
operational burdens and streamlining workflows. Our approach
transforms CI/CD practices, enhancing efficiency, delivery speed,
and quality.

Index Terms—Large language model, AI agent, multi-agent
system, CI/CD

I. INTRODUCTION

As digital transformation accelerates, enterprises face in-
creasing pressure to adopt agile IT architectures and stream-
lined Continuous Integration/Continuous Deployment (CI/CD)
pipelines. However, existing solutions often rely on manual
configurations and static processes, leading to inefficiencies
such as error-prone code migrations, prolonged debugging
cycles, and complex multi-cloud deployments.

Traditional CI/CD tools like Jenkins, GitHub Actions, and
SonarQube [1] automated deployments but required exten-
sive manual setup and struggled with emerging technologies.
MetaGPT [2] enhanced efficiency through role-based agents
but remains rigid when handling unexpected challenges. LLM-
driven Infrastructure-as-Code (IaC) generation [3] improved
flexibility yet suffers from hallucinations and demands high
DevOps expertise. These limitations underscore the need for a
fully automated CI/CD solution that ensures scalability, accu-
racy, and adaptability while minimizing human intervention.

To address these challenges, we introduce AutoDevFlow,
an LLM-powered multi-agent system. AutoDevFlow auto-
mates the entire software development lifecycle, including
code conversion, error correction, and deployment with four
system mechanisms: Optimized Task Allocation, Planning
First, Iterative Correction Process, and Modular Collaboration
Architecture. Experiments demonstrate robust error correction,
efficient cross-language handling, and automatic deployment,
allowing engineers to focus on innovation.
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Fig. 1. system architecture of AutoDevFlow.
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II. PROPOSED FRAMEWORK

The architecture of AutoDevFlow, as shown in Fig. 1, is
divided into two distinct layers: the Control Layer and the
Processing Layer. The Control Layer initially analyzes the
user’s task and delegates subtasks to different agent teams in
the Processing Layer. The implementation is explained below.

A. Control Layer

As shown in the outermost frame in Fig. 1, after the users
give a task, the Recipient Agent performs query translation for
better performance. The Task Analysis Agent then clarifies and
analyzes the requirements, passing the results to the Central
Orchestrator Agent. The Central Orchestrator Agent decides
which agent team should be assigned the task for maximum
efficiency. Once assigned, the designated team carries out its
responsibilities. When the team finishes its work, the flow
returns to the Central Orchestrator Agent, which determines
the next step, for example, assigning any remaining tasks to
another agent team or, if the task is complete, returning to
the Recipient Agent. Finally, the Recipient Agent performs
response optimization and provides easy-to-understand feed-
back to the user.

B. Processing Layer

Taking the deployment team as an example, as shown in
Fig. 2, once the Central Orchestrator Agent assigns a task to
the deployment team, the Planning and Requirement Agents
use the Planning First mechanism to design an efficient exe-
cution plan. Next, the RAG Agent reviews the user-provided
deployment rules and passes the results to the Execution
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Fig. 2. The workflow of the deployment team of the processing layer.

Agent, which directs the YAML and Image Agents to generate
the necessary artifacts. The Check Agent then verifies these
outputs; if they fall short, the Correction Agent corrects the
errors and returns to the Execution Agent. If the artifacts meet
requirements, the Deployment Agent proceeds. Upon success,
the Success Agent integrates deployment details (e.g., port and
service information) and communicates the outcome to the
Central Orchestrator Agent. In case of failure, errors are routed
to the Correction Agent. Notably, if the Correction Agent
corrects errors more than three times, the process returns to the
Planning Agent for replanning to avoid an infinite cycle. The
correction process mentioned above is our system mechanism:
Iterative Correction Process.

C. System Mechanism

The system incorporates four key mechanisms:

1) Optimized Task Allocation: The Central Orchestrator
Agent, highlighted in the red circle in Fig. 1, organizes
tasks, coordinates team collaboration, and validates task
accuracy to ensure an efficient workflow.

2) Planning First: Dedicated agents, highlighted in the
left red frame in Fig. 2, conduct detailed task planning,
providing clear direction and prioritization.

3) Iterative Correction Process: The Correction Agent,
highlighted in the correct red frame in Fig. 2, detects
errors and applies targeted corrections. If an error per-
sists after three iterations, the system resets and replans
from the Planning Agent.

4) Modular Collaboration Architecture: This architec-
ture facilitates seamless agent expansion without requir-
ing major structural modifications, enhancing scalability
and adaptability. For instance, a User Agent can be
added to conduct a final pre-deployment check before
the Deployment Agent deploys the system to the cloud
within the deployment team, as shown in Fig. 2.

ITII. EXPERIMENT RESULT

AutoDevFlow is built upon a modified AutoGen frame-
work [4] to enable graphical input of workflows, achieving a
fully automated end-to-end development process. Each LLM-
integrated agent utilizes GPT-40 mini [5]. Our experiment
aims to automatically deploy generated code to Google Ku-
bernetes Engine (GKE) on Google Cloud Platform (GCP).
The Retrieval-Augmented Generation (RAG) module employs

a faiss [6], a library for efficient similarity search, to enable
fast text retrieval and segmentation using GCP documentation
as a knowledge base for accurate code generation.

To evaluate the system’s feasibility and MAS problem-
solving capabilities, we design three challenging tasks:

¢ Debug and deploy erroneous code

o Convert Python code to Java and deploy

¢ Determine the required environment and deploy automat-

ically

The first task demonstrates high success due to the strong
syntax and formatting accuracy of the LLM. However, the
second and third tasks reveal challenges in handling cross-
language conversions and managing different versions, where
execution is often needed to identify issues.

Our Iterative Correction Process mechanism effectively
addresses these challenges. The Correction Agent provides
corrections, the Planning Agent re-strategizes on failed retries,
and when necessary, the Central Orchestrator Agent reassigns
tasks to the coding team for manual intervention, showcasing
its strength in task distribution, cross-team coordination, and
maintaining smooth deployment workflows.

IV. CONCLUSION

AutoDevFlow introduces a novel CI/CD automation ap-
proach using an LLM-powered multi-agent system. It ad-
dresses key challenges such as debugging, cross-language
code conversion, and dynamic deployment through detailed
planning, iterative correction, and modular collaboration. Ex-
periments show it robustly corrects errors and efficiently
distributes tasks, underscoring its effectiveness and potential
for fully autonomous software development pipelines.
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